Neural Reranking for Named Entity Recognition

Jie Yang, Yue Zhang, Fei Dong

Singapore University of Technology and Design

September, 2017; Varna.
• Introduction
 – Named Entity Recognition (NER) task
 – Classical models

• Neural Reranking for NER

• Experiments
 – Baselines
 – Results
 – Examples

• Conclusion
• Named Entity Recognition task
 – Find named entities for texts

• Examples:

 [Barack Obama] _PER_ was born in [hawaii] _LOC_.

 Rare [Hendrix] _PER_ song draft sells for almost $17,000.

 [Volkswagen AG] _ORG_ won 77,719 registrations.

 The bank is a division of [First Union Corp] _ORG_.
Introduction

• Models?
 – Classification
 – Sequence labeling

• Examples:

The chairman of [the Federal Reserve]_ORG is [Ben Bernanke]_PERSON
• Models?
 – Classification
 – Sequence labeling: HMM, CRF

• Examples:

The chairman of [the Federal Reserve]_{ORG} is [Ben Bernanke]_{PERSON}
• **Representations?**
 – **Discrete Features**
 – **Neural Features**

CRF Layer:

<table>
<thead>
<tr>
<th></th>
<th>t_{i-1}</th>
<th>t_i</th>
<th>t_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Features:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{i-1}</td>
<td>chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_i</td>
<td>of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{i+1}</td>
<td>the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\mathbf{c}
\mathbf{t}
Introduction

• **Representations?**

 – Discrete Features: $c_i, c_i c_{i-1}, c_{i-1} c_i c_{i+1}, ...$

 – Neural Features

CRF Layer:

Discrete Features:

- c_{i-1}
- Chairman
- c_i
- Of
- c_{i+1}
- The

...
• **Representations?**

 – Discrete Features \(c_i, c_i c_{i-1}, c_{i-1} c_i c_{i+1}, \ldots \)

 – Neural Features

- **CRF Layer:**

- **BiLSTM Layer:**

- **Neural Representation:**

 \[\ldots, \text{chairman}, \text{of}, \text{the}, \ldots \]
Introduction

• Representations?
 – Discrete Features
 – Neural Features

\[c_i, c_i c_{i-1}, c_{i-1} c_i c_{i+1}, \ldots \]

word embedding + LSTM

character embedding

CRF Layer:
BiLSTM Layer:
Neural Representation:

\[t_{i-1} \quad t_i \quad t_{i+1} \]

\[c_{i-1} \quad c_i \quad c_{i+1} \]

chairman of the \ldots
• Challenges?

 – Internal Relations of Entity (with context)
 • “Germany beat Argentina 1:0.” LOC beat ?
 • “Lin Dan beat Lee Chong Wei 2:0.” ? beat PER
• Challenges?
 – Internal Relations of Entity (with context)
 • “Germany beat Argentina 1:0.”
 • “Lin Dan beat Lee Chong Wei 2:0.”
 – Sparsity of Words in Entity (OOV problem)
 • “Barack Obama was born in Hawaii.”
 • “Bruno Mars was born in Hawaii.”
Challenges?

- Internal Relations of Entity (with context)
 - “Germany beat Argentina 1:0.” LOC beat ?
 - “Lin Dan beat Lee Chong Wei 2:0.” ? beat PER

- Sparsity of Words in Entity (OOV problem)
 - “Barack Obama was born in Hawaii.”
 - “Bruno Mars was born in Hawaii.”

- Global Features
 - “A beat B to win FIFA World Cup final.”
 - “A beat B to win Olympic Badminton final.”
• Challenges?
 – Internal Relations of Entity (with context)
 • “Germany beat Argentina 1:0.” LOC beat ?
 • “Lin Dan beat Lee Chong Wei 2:0.” ? beat PER
 – Sparsity of Words in Entity (OOV problem)
 • “Barack Obama was born in Hawaii.”
 • “Bruno Mars was born in Hawaii.”
 – Global Features
 • “A beat B to win FIFA World Cup final.”
 • “A beat B to win Olympic Badminton final.”

• Solution ?
• **Neural Reranking model for NER**
 – Reranking model
 • Generate N-best sequences through base model
 • Select the best sequence using new reranking model
Reranking

• **Neural Reranking model for NER**

 – Reranking model

 • Generate N-best sequences through base model

 • Select the best sequence using new reranking model

 – Neural Reranking

 • Represent candidate results using neural features
• Neural Reranking Example

\[S: \quad \text{Barack Obama was born in hawaii .} \]
Reranking

- Neural Reranking Example

S: Barack Obama was born in hawaii.

N-best Candidates

L1: B-PER O O O O B-LOC O
L2: B-LOC I-LOC O O O O O O
L3: B-PER I-PER O O O O B-LOC O
Ln: B-PER I-PER O O O O B-PER O
Reranking

- Neural Reranking Example

\[S: \text{Barack Obama was born in hawaii}. \]

N-best Candidates

\[
\begin{align*}
L_1: & \quad B\text{-PER} \quad O \quad O \quad O \quad O \quad B\text{-LOC} \quad O \\
L_2: & \quad B\text{-LOC} \quad I\text{-LOC} \quad O \quad O \quad O \quad O \quad O \\
L_3: & \quad B\text{-PER} \quad I\text{-PER} \quad O \quad O \quad O \quad B\text{-LOC} \quad O \\
\ldots & \\
L_n: & \quad B\text{-PER} \quad I\text{-PER} \quad O \quad O \quad O \quad B\text{-PER} \quad O
\end{align*}
\]

Base Model

Reranking model to select best sequence
• **Our Reranking Model**

 – Replace recognized entity with its type
 – Non-entity words keep the same
 – Neural representation for candidate sequences
 – Turn to sentence classification problem

\[
S: \text{Barack Obama was born in hawaii .}
\]

\[
L_1: B-\text{PER} \ O \ O \ O \ B-\text{LOC} \ O \quad \rightarrow \quad C_1: \ PER \ \text{Obama was born in LOC .}
\]

\[
L_2: B-\text{LOC} \ I-\text{LOC} \ O \ O \ O \ O \ O \ O \quad \rightarrow \quad C_2: \ LOC \ was \ born \ in \ hawaii .
\]

\[
L_3: B-\text{PER} \ I-\text{PER} \ O \ O \ O \ B-\text{LOC} \ O \quad \rightarrow \quad C_3: \ PER \ was \ born \ in \ LOC .
\]

\[
\ldots
\]

\[
L_n: B-\text{PER} \ I-\text{PER} \ O \ O \ O \ B-\text{PER} \ O \quad \rightarrow \quad C_n: \ PER \ was \ born \ in \ \ldots \ PER .
\]
• **Advantages**

 – Learning sentence patterns automatically

 • “LOC beat LOC” > “LOC beat PER”

 • “PER beat PER” > “ORG beat PER”

 – Word sparsity is eliminated

 • “Barack Obama was born in Hawaii.” PER was born ...

 • “Bruno Mars was born in Hawaii.” PER was born ...

 – Global features captured using rich neural features

 • Word + Character representation

 • LSTM + CNN representation
Experiments

• Baselines
 – Discrete features with CRF
Experiments

• Baselines

– Discrete features with CRF

<table>
<thead>
<tr>
<th>Description</th>
<th>Feature Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>word grams</td>
<td>w_i, w_iw_{i+1}</td>
</tr>
<tr>
<td>shape, capital</td>
<td>$Sh(w_i), Ca(w_i)$</td>
</tr>
<tr>
<td>capital + word</td>
<td>$Ca(w_i)w_i$</td>
</tr>
<tr>
<td>connect word</td>
<td>$Co(w_i)$</td>
</tr>
<tr>
<td>capital + connect</td>
<td>$Ca(w_i)Co(w_i)$</td>
</tr>
<tr>
<td>cluster grams</td>
<td>$Cl(w_i), Cl(w_iw_{i+1})$</td>
</tr>
<tr>
<td>prefix, suffix</td>
<td>$Pr(w_i), Su(w_i)$</td>
</tr>
<tr>
<td>POS grams</td>
<td>$P(w_i, w_1w_{i+1}, w_{i-1}w_1w_{i+1})$</td>
</tr>
<tr>
<td>POS + word</td>
<td>$P(w_0)w_0$</td>
</tr>
</tbody>
</table>

Discrete Features
• **Baselines**

 – Discrete features with CRF

 – Neural features with CRF

![Neural Features Diagram]

Experiments
Experiments

- **Baselines**
 - Discrete features with CRF
 - Neural features with CRF

Character CNN representation
Experiments

• **Baselines**

 – Discrete features with CRF
 – Neural features with CRF

BiLSTM-CRF with character CNN feature
Experiments

• **Neural Reranking Structure**
 - LSTM + CNN representation for candidate sentences
 - Training
 • 5-folder experiment for generating training data
 • Sentence level regression for sentence level accuracy
 • Loss function
 \[
 J(\Theta) = \frac{1}{|D|} \sum_{(C_i, y_i) \in D} (y_i - s(C_i))^2 + \frac{\lambda}{2} ||\Theta||^2_2
 \]
 \[s(C_i): \text{reranker score}\]
 \[y_i: \text{sentence level accuracy}\]
• **Neural Reranking Structure**

 – Decoding

 • Mixture decoding strategy

 \[
 \hat{y}_i = \arg \max_{C_i \in C(S)} (\alpha s(C_i) + (1 - \alpha)p(L_i))
 \]

 \(s(C_i)\): reranker score

 \(p(L_i)\): probability of baseline output

 \(\alpha \in [0, 1]\): interpolation weight, tuned in dev data
Experiments

- **Neural Reranking Structure**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-best</td>
<td>10</td>
<td>peepholes</td>
<td>no</td>
</tr>
<tr>
<td>wordDim</td>
<td>50</td>
<td>charDim</td>
<td>50</td>
</tr>
<tr>
<td>LSTM hidden</td>
<td>100</td>
<td>dropout</td>
<td>0.2</td>
</tr>
<tr>
<td>charCNN filter</td>
<td>50</td>
<td>batch size</td>
<td>128</td>
</tr>
<tr>
<td>wordCNN filter</td>
<td>100</td>
<td>λ</td>
<td>0.001</td>
</tr>
<tr>
<td>charCNN length</td>
<td>3</td>
<td>Adam β_1</td>
<td>0.1</td>
</tr>
<tr>
<td>wordCNN length</td>
<td>3</td>
<td>Adam β_2</td>
<td>0.999</td>
</tr>
<tr>
<td>learning rate</td>
<td>0.001</td>
<td>Adam ϵ</td>
<td>1e-8</td>
</tr>
</tbody>
</table>

Hyper-parameters
Experiments

• Results

– Oracle result for discrete CRF (88.15% -> 97.13%)

![Graph showing Oracle scores vs Candidate number]

Oracle results of discrete CRF model
Experiments

• **Results**

 – Full model works better in long sentences

 Sentence selection accuracy (SSA) with sentence length

Experiments
Experiments

• **Results**

 – Help for identifying fix type of entities

 • PER/LOC/ORG are improved, MISC becomes worse

![F1-value comparison by entity types](image)
Experiments

Final Results

- Discrete baseline: reranker improves by 1.1%

<table>
<thead>
<tr>
<th>Model (%)</th>
<th>F1</th>
<th>ΔF1</th>
<th>SSA</th>
<th>ΔSSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>88.15</td>
<td>0</td>
<td>83.31</td>
<td>0</td>
</tr>
<tr>
<td>LSTM</td>
<td>88.75</td>
<td>0.60</td>
<td>84.41</td>
<td>1.10</td>
</tr>
<tr>
<td>LSTM+CNN</td>
<td>88.79</td>
<td>0.64</td>
<td>84.63</td>
<td>1.32</td>
</tr>
<tr>
<td>LSTM+char</td>
<td>88.93</td>
<td>0.78</td>
<td>84.69</td>
<td>1.38</td>
</tr>
<tr>
<td>Full model</td>
<td>89.25</td>
<td>1.10</td>
<td>85.12</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Final result for discrete baseline
Final Results

- Discrete baseline:

<table>
<thead>
<tr>
<th>Discrete Model (%)</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazama and Torisawa (2007)</td>
<td>88.02</td>
</tr>
<tr>
<td>Suzuki and Isozaki (2008)</td>
<td>89.92</td>
</tr>
<tr>
<td>Nguyen et al. (2010)</td>
<td>88.16</td>
</tr>
<tr>
<td>Ratinov and Roth (2009)</td>
<td>88.55</td>
</tr>
<tr>
<td>Ratinov and Roth (2009)*</td>
<td>90.57</td>
</tr>
<tr>
<td>Luo et al. (2015)</td>
<td>91.20</td>
</tr>
<tr>
<td>Discrete baseline</td>
<td>88.13</td>
</tr>
<tr>
<td>Our reranker</td>
<td>89.25</td>
</tr>
</tbody>
</table>

State-of-the-art discrete systems
Experiments

- **Final Results**

 - Neural baseline: reranker gives best results

<table>
<thead>
<tr>
<th>Neural Model (%)</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collobert et al. (2011)</td>
<td>89.59</td>
</tr>
<tr>
<td>Passos et al. (2014)</td>
<td>90.90</td>
</tr>
<tr>
<td>Huang et al. (2015)</td>
<td>90.10</td>
</tr>
<tr>
<td>Chiu and Nichols (2016)</td>
<td>90.77</td>
</tr>
<tr>
<td>Lample et al. (2016)</td>
<td>90.94</td>
</tr>
<tr>
<td>Ma and Hovy (2016)</td>
<td>91.21</td>
</tr>
<tr>
<td>Neural baseline</td>
<td></td>
</tr>
<tr>
<td>Our reranker</td>
<td>91.25</td>
</tr>
</tbody>
</table>

State-of-the-art neural systems
Experiments

- **Examples**
 - Learns the right sentence pattern

<table>
<thead>
<tr>
<th>Baseline 1</th>
<th>Reranker 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Baseline 2</th>
<th>Reranker 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>West [Indian] \textit{MISC} all-rounder [Phil Simmons] \textit{PER} took four ...</td>
<td>[West Indian] \textit{MISC} all-rounder [Phil Simmons] \textit{PER} took four ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline 3</th>
<th>Reranker 3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Baseline 4</th>
<th>Reranker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>... prisoners are held in [Rangoon] \textit{LOC} ’s [Insein Prison] \textit{PER} .</td>
<td>... prisoners are held in [Rangoon] \textit{LOC} ’s [Insein Prison] \textit{LOC} .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline 5</th>
<th>Reranker 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PAKISTAN] \textit{LOC} WIN TOSS , PUT [ENGLAND] \textit{ORG} INTO BAT.</td>
<td>[PAKISTAN] \textit{LOC} WIN TOSS , PUT [ENGLAND] \textit{LOC} INTO BAT.</td>
</tr>
</tbody>
</table>
Conclusion

• Proposed a neural reranker for NER
• Improved most on fixed type entities
• Improved more on longer sentences
• Achieved state-of-the-art result on CoNLL03
Thanks!

Code available @ https://github.com/jiesutd/RerankNER