Overview

Motivation: build a unified deep learning based sequence labeling framework which is efficient and handy.

Sequence Labeling: assign a categorical label to each member of a sequence inputs, e.g., POS tagging, NER, Chunking.

Models: Representation + Inference
- **Represent:** discrete (manual features) neural (LSTM, CNN)
- **Inference:** softmax
 - CRF, HMM, MEMM

NCRF++: based on PyTorch, compatible with Python 2 and 3. Neural version of CRF++.

Framework: layer-wise design (Figure 1).
- **Char seq. layer:** char LSTM/GRU/CNN*
- **Word seq. layer:** word LSTM/GRU/CNN
- **Inference layer:** softmax/CRF
 - * manual feature embeddings are also supported.

Advantages:
- **Fully configurable:** user can customize structure with a configuration file, no code work. (Figure 2)
- **Flexible with features:** it integrates SOTA char/word neural features and also supports user-defined features.
- **Effective:** it gives comparable performance with SOTA sequence labeling models. (Table 1)
 - **N-best:** it supports n-best CRF decoding which gives more candidate labels. (Figure 3)
 - **Efficient:** batched implementation lead to a fast running speed. (>2000 sent/s, in Figure 4)

Tasks and Datasets:
- **Named Entity Recognition (NER):** CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003).
- **Chunking:** CoNLL 2000 share task (Tjong Kim Sang and Buchholz, 2000).
- **Part-of-speech tagging (POS):** WSJ portion of PTB, same split with Ma and Hovy (2016).

Experiments:
- **6 CRF frameworks:** {Char LSTM (CLSTM), Char CNN (CCNN), Nochar}
 - **Word LSTM (WLSTM), Word CNN (WCNN)**
 - **Settings:** Glove 100 embedding; SGD optimizer; batch_size=10; dropout=0.5
 - **Evaluation:** Best result under 5 random seeds, detail and statistical results are shown in our COLING 2018 paper “Design Challenges and Misconceptions in Neural Sequence Labeling”.

Performance: (Table 1)
- **CLSTM+WLSTM+CRF** has same structure with Lample et al (2016), gives similar results.
- **CCNN+WLSTM+CRF** has the same structure with Ma and Hovy (2016) and Yang et al. (2017), they have comparable performance.
- **Word LSTM are generally better than word CNN under all settings.**
- **Character features (LSTM/CNN) are useful for all three tasks.**
- **Char LSTM and Char CNN can give comparable improvements.**

Analysis

N-best decoding:
- Figure 3 is evaluated on NER test dataset.
- N-best decoding provides more candidate labels than the ordinary decoding.
- Oracle F1 increases from 91.35% to 97.47% in 10-best decoding.
- Oracle token accuracy increase from 98.00% to 99.39% in 10-best decoding.

Running Speed:
- Running speed increases significantly with the increment of batch size. Decoding speed starts saturating at batch_size=200 but training process doesn’t.
- **Fast:** training speed reaches 1000 sents/s and decoding speed exceeds 2000 sents/s under large batch with GPU acceleration.

Table 1: Model performance

<table>
<thead>
<tr>
<th>Models</th>
<th>NER (F1)</th>
<th>Chunk (F1)</th>
<th>POS (Acc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nochar+WCNN+CRF</td>
<td>88.90</td>
<td>94.23</td>
<td>96.99</td>
</tr>
<tr>
<td>CLSTM+WCNN+CRF</td>
<td>90.70</td>
<td>94.76</td>
<td>97.38</td>
</tr>
<tr>
<td>CCNN+WLSTM+CRF</td>
<td>90.43</td>
<td>94.77</td>
<td>97.33</td>
</tr>
<tr>
<td>Nochar+WLSTM+CRF</td>
<td>89.45</td>
<td>94.49</td>
<td>97.20</td>
</tr>
<tr>
<td>CLSTM+WLSTM+CRF</td>
<td>91.20</td>
<td>95.00</td>
<td>97.49</td>
</tr>
<tr>
<td>CCNN+WLSTM+CRF</td>
<td>91.35</td>
<td>95.06</td>
<td>97.46</td>
</tr>
<tr>
<td>Lample et al. (2016)</td>
<td>90.94</td>
<td>--</td>
<td>97.51</td>
</tr>
<tr>
<td>Ma and Hovy (2016)</td>
<td>91.21</td>
<td>--</td>
<td>97.55</td>
</tr>
<tr>
<td>Yang et al. (2017)</td>
<td>91.20</td>
<td>94.66</td>
<td>97.55</td>
</tr>
<tr>
<td>Peters et al. (2017)</td>
<td>90.87</td>
<td>95.00</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure 3: Oracle NER F1 in n-best decoding

Figure 4: Speed with batch size (NER task)